Structured Perturbations Part II: Componentwise Distances

نویسنده

  • Siegfried M. Rump
چکیده

In the second part of this paper we study condition numbers with respect to componentwise perturbations in the input data for linear systems and for matrix inversion, and the distance to the nearest singular matrix. The structures under investigation are linear structures, namely symmetric, persymmetric, skewsymmetric, symmetric Toeplitz, general Toeplitz, circulant, Hankel, and persymmetric Hankel structures. We give various formulas and estimations for the condition numbers. For all structures mentioned except circulant structures we give explicit examples of linear systems Aεx = b with parameterized matrix Aε such that the unstructured componentwise condition number is O(ε−1) and the structured componentwise condition number is O(1). This is true for the important case of componentwise relative perturbations in the matrix and in the righthand side. We also prove corresponding estimations for circulant structures. Moreover, bounds for the condition number of matrix inversion are given. Finally, we give for all structures mentioned above explicit examples of parameterized (structured) matrices Aε such that the (componentwise) condition number of matrix inversion is O(ε−1), but the componentwise distance to the nearest singular matrix is O(1). This is true for componentwise relative perturbations. It shows that, unlike the normwise case, there is no reciprocal proportionality between the componentwise condition number and the distance to the nearest singular matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Componentwise Structured and Unstructured Backward Errors Can be Arbitrarily Far Apart

Given a linear system Ax = b and some vector x̃, the backward error characterizes the smallest relative perturbation of the input data such that x̃ is a solution of the perturbed system. If the input matrix has some structure such as being symmetric or Toeplitz, perturbations of the input matrix may be restricted to perturbations within the same class of structured matrices. For normwise perturba...

متن کامل

Eigenvalues, Pseudospectrum and Structured Perturbations

We investigate the behavior of eigenvalues under structured perturbations. We show that for many common structures such as (complex) symmetric, Toeplitz, symmetric Toeplitz, circulant and others the structured condition number is equal to the unstructured condition number for normwise perturbations, and prove similar results for real perturbations. An exception are complex skewsymmetric matrice...

متن کامل

The structured sensitivity of Vandermonde-like systems

We consider a general class of structured matrices that includes (possibly confluent) Vandermonde and Vandermonde-like matrices. Here the entries in the matrix depend nonlinearly upon a vector of parameters. We define condition numbers that measure the componentwise sensitivity of the associated primal and dual solutions to small componentwise perturbations in the parameters and in the right-ha...

متن کامل

Using dual techniques to derive componentwise and mixed condition numbers for a linear functional of a linear least squares solution

We prove duality results for adjoint operators and product norms in the framework of Euclidean spaces. We show how these results can be used to derive condition numbers especially when perturbations on data are measured componentwise relatively to the original data. We apply this technique to obtain formulas for componentwise and mixed condition numbers for a linear functional of a linear least...

متن کامل

Using dual techniques to derive componentwise and mixed condition numbers for a linear function of a linear least squares solution

We prove duality results for adjoint operators and product norms in the framework of Euclidean spaces. We show how these results can be used to derive condition numbers especially when perturbations on data are measured componentwise relatively to the original data. We apply this technique to obtain formulas for componentwise and mixed condition numbers for a linear function of a linear least s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2003